PHYSICAL REVIEW B 77, 054511 (2008)

Vortices in a mesoscopic cone: A superconducting tip in the presence of an applied field
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A mesoscopic superconductor in the shape of a circular cone, and size of the order of the coherence length,
is investigated theoretically. The external magnetic field is applied perpendicular to its circular basis, and
vortex states are obtained in the framework of the Ginzburg-Landau theory. We find patterns made of giant
vortex states (GVS), curved multivortex states (MVS), and a combination of both of them. The results are
summarized in phase diagrams, where the GVS and MVS regimes are determined according to the applied field
and geometric parameters. We find that superconductivity persists up to fields much larger than the upper
critical field (H,,) in case of a very small apex angle. The results are relevant to understand the properties of
superconducting tips, which are currently used in scanning tunneling microscopy, in the presence of an external

applied field.
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I. INTRODUCTION

The importance of the study of superconducting mesos-
copic structures is increasing because of the availability of
modern techniques that enable their fabrication under con-
trolled conditions. Mesoscopic structures are those with di-
mensions comparable to the coherence length & or to the
magnetic penetration depth N. The mesoscopic size makes
the superconducting properties quite different from those of
macroscopic samples, as found in the many geometries ex-
perimentally and theoretically studied so far: thin disks,'”’
cylinders,®? rings,»!%!! and spheres.'>'* The Ginzburg-
Landau (GL) theory has been proven to give a good account
of the properties of mesoscopic superconductors in the whole
H-T diagram."

There has been increasing interest to understand the prop-
erties of superconducting tips'® because of their use in scan-
ning tunneling spectroscopy. The presence of a magnetic
field'”!8 adds an extra tunable parameter to investigate those
systems. Recently, Kohen et al.'® were able to probe the
superfluid velocity on the surface of a superconductor using
a superconducting tip. They succeeded in detecting the Dop-
pler shift, which gives information about the vortex cores at
& scale and also about the supercurrent flow around the vor-
tex within the N scale. Notice that a superconducting tip, and,
as a matter of fact, any small protuberance on the surface of
a type I superconductor, is always of type II. The situation
resembles that of a type I superconducting film that turns
into a type II superconductor by its small thickness (d~ &).
In this case, the effective London penetration length along
the surface becomes equal to \?/d. For this reason, tips are
expected to remain in the superconducting state in the pres-
ence of fields above the thermodynamic type I critical
ﬁeld_18,20,21

The scanning tunneling spectroscopy investigation of sur-
faces through a superconducting tip in the presence of an
applied field must take into account the possible presence of
vortices. Previously, Misko et al. modeled theoretically a su-
perconducting bridge with the Ginzburg-Landau theory?? and
studied giant vortex states (GVS). The bridge basically con-
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sists of two oppositely positioned cones with their apexes in
contact. Giant vortices were also found in a mesoscopic wire
containing a narrow constriction?? as well as the break up of
a GVS into a multivortex state (MVS).

The cone can be viewed as a sum over different disks with
increasing diameter D, and this serves as an extra motivation
for its study. For a very thin superconducting disk with di-
ameter D of the order of or less than 2¢, no vortices can enter
and only the Meissner state is possible. Above this limit, and
for D<4¢, GVSs are allowed, while for D>4&, MVSs are
also possible.?* Theoretical studies™!> of very thin supercon-
ducting disks are in fair agreement with experimental
measurements.?>2° However, those studies were limited to
samples with thickness smaller than & with the applied field
oriented perpendicularly to the flat geometry. From this as-
pect, it is clear that the amount of flux penetrating the super-
conducting cone must be a function of the height, as found
here.

GVS and MVS have been recently observed in mesos-
copic superconductors.”?”-?8 Intrinsically novel properties are
found, such as induced antivortices that appear for certain
values of the applied field>*3? in the case of a thin supercon-
ducting square. In this paper, we determine the GVS and also
the MVS of a single cone with the applied field oriented
perpendicularly to the circular basis. We determine the phase
diagram that describes the GVS and MVS regimes in the
applied field and in the geometric parameter space. The Lon-
don penetration length is taken much larger than the dimen-
sions of the cone, such that the local magnetic field inside
can be taken equal to the applied one. The superconducting
order parameter is expressed as a linear expansion of solu-
tions of the linear Ginzburg-Landau equation. We limit the
present study to a maximum of two coefficients, which is
sufficient to describe the vortex pattern of a small cone such
that at most one shell of vortices can be formed. The soft-
ware packages COMSOL (which is based on the finite element
method) and MATLAB are used to solve the linear GL equa-
tion for our cone geometry and to calculate the Gibbs free
energy of the nonlinear theory.

This paper is organized as follows. In Sec. II, we discuss
the theoretical framework used to obtain our results. In Secs.
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FIG. 1. Coordinate system and the circular cone in the presence
of an applied field.

III and IV, we study giant and multivortex states, respec-
tively. In Sec. V, we show the phase diagrams for the cone.
Last, in Sec. VI, we draw the major conclusions of our paper.
In the Appendix, some solutions of the linearized GL equa-
tion, which do not participate in the construction of our
physical states, are discussed.

II. THEORETICAL FRAMEWORK

The cone geometry is shown in Fig. 1 together with the
considered coordinate system. The cone is surrounded by

vacuum with an external uniform magnetic field H=He,
along the major axis. Only two parameters are required to
describe a circular cone, among the three existing ones: the
height z, the apex angle 6, and the radius r. Height, vertex
angle, and radius are related by r=z, tan(#), and we choose
the first two variables, using the notation z,- 6, to describe the
circular cone.

According to Ginzburg and Landau, the Gibbs free energy
of the superconductor near the critical temperature 7. can be
expanded in powers of the complex order parameter W(r)
that gives the density of Cooper pairs: |W(7)|>. The Gibbs
free energy difference between the superconducting state and
the normal state is

1
FS—Fn=jdV{a(T)|‘If|2+ 5,8|‘If|4

hZ 2

1 = - - -
—ZT(VXA—H)-H},
(1)

with the phenomenological constants a(7T)= ay(T-T,) <0,
B>0, m* (the mass of one Cooper pair), and ®y=hc/2e, the
fundamental unit of flux. By minimizing F; with respect to
W(r) and 5(7) one obtains the Ginzburg-Landau equations.
The following boundary condition is imposed on all external
surfaces of the cone:
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Because of its small size, we assumed the magnetic field

inside and outside the circular cone equal, and so VXA=H.
We express quantities in this theory in dimensionless units
defined by the following reduced units: the coherence length
&T)={h*/2m*[-a(T)]}'"* (lengths); ®,/27wE(T) (vector po-
tential), and so H(T)=®,/27wET)? (magnetic field); ¥,
=\-a(T)/ B (order parameter); and Fy=a(T)*/283 (free en-
ergy). In terms of these dimensionless units, the Gibbs free
energy becomes

1 -
F=2fdv{—|\lf|2+EI\PI4+I(V—iA)‘I’I2}, (3)

where we set the normal part of the free energy F,=0, and
the integration is restricted to the volume of the cone. The
boundary condition in dimensionless units becomes

i+ (V= iA) ] porndary = 0 (4)

Following Ref. 6, we introduce the L linear operator, in
terms of which the nonlinear GL equation becomes

Lyp=— |2y, L=-(V-id)*-1. (5)

Consequently, only the negative eigenvalues A of this L cor-
respond to the superconducting state.

We introduce cylindrical coordinates (p,¢,z) into the
problem because the cone has symmetry around the azi-

muthal angle ¢. The external magnetic field, I;V =Hé_, is ob-
tained from A=(Hp/2)e,, which satisfies the London gauge

V-A=0. The order parameter is taken of the form

V(p,¢,2) = P (p,2)e™?, (6)

where the angular momentum quantum number L is an inte-
ger due to the single valuedness of the order parameter. The
following linear equation must be solved:

Ly (p,2) = At a(p,2), (7)

where n (=0,1,2,3,...) enumerates the different states at a
certain angular momentum quantum number L. Following
Refs. 1 and 2, we restrict ourselves to n=0 because these
states are known to give the major contribution, and hereaf-
ter drop the n in ¢ ,, in favor of a short notation, such that ¢;
stands for ¢y . Similarly, A; is short for A; ,_o. A study of
some of the n # 0 eigenvalues is given in the Appendix. This
operator in dimensionless units and using cylindrical coordi-
nates becomes

. 1a<aqf> PV 1( 1 2>2

L=———\p—|-—F+3|(L-ZHp"| -1. (8)

pip\" dp oz 2

Then a general expression of the order parameter, expressed
in this basis, with maximum angular momenta L, is
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L

W(p.@.2)= 2 C i (p:2)explil;@). )
Lj:O ’

Substituting Eq. (9) into the free energy expression of Eq. (3)
gives F as a function of the complex coefficients {C; }. To
obtain the equilibrium vortex configurations, F must be ‘mini-
mized with respect to the linear solution free parameters

{CL]},

oF oF
——=0 and —=0, (10)
iCy; e
J

and the stability of the solution verified. If the state is stable,
then its Hessian matrix,

FF & F & F
dC3 9C,dC, T ICIC]
PF PF & F
Mypse=| 9CodCr oC1 " aciacy | ()
& F &F FF
acrac, ociac, T ack

should be positive definite. The search for both GVS and
MYVS relies on the computation of the following integrals for
the eigenvectors of Eq. (7):

20 7 tan(6)
AL L,= J dz f pdpyy, (p. 207 (p.2),  (12)
0 0
20 z tan(6)
A= f dz J pdpy (p.2), (13)
0 0

20 z tan(6)
B, = f dzf pdpebii(p,z). (14)
0 0

In case that just a single term is considered in Eq. (9), only
the GVS states can be described by

W(p,¢,2) = Cripy(p.2)e™, (15)

where the coefficient C; is a constant to be determined by
imposing on the free energy [Eq. (3)] the conditions of Egs.
(10) and (11). One obtains

B
C, = = \/—ALA—L, (16)
L

and for the free energy,
B

F=—27TAI% .
Ap

(17)
Inspection of the second derivative of the free energy shows
that a negative eigenvalue A; is the condition to render the
state stable.

MYVS can be constructed from a two-component order pa-
rameter in Eq. (9). In this situation too, analytical expres-
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sions for the coefficients, the free energy, and the stability
conditions can be obtained. The two-component order pa-
rameter is

W(p,¢.2) = Cp iy (p.2)e™ 19+ Cp iy (p.2)e™?. (18)

In case one of the coefficients (CLl’CLz) vanishes, then this
state becomes a GVS. If these coefficients are nonzero, then
this is a MVS. If both of them are zero, then the normal state
is reached. The description of a GVS through two compo-
nents is relevant to check its stability with respect to the
MVS. According to Ref. 1, whether C, 1, are real or complex
does not affect the value of the free energy, so we can regard
them as real. By minimizing the Gibbs free energy with re-
spect to C; and Cp, using Eq. (10), we obtain the possible
equilibrium states: (i) The normal state with W(p,¢,z)=0
corresponds to Cp =Cp, =0. (i) The GVS with Cp,=0
is W(p,@.2)=Cp ™, with Cle(fALlBLI/ALl)”z;
the C, =0 state is ‘I’(p,(p,z)=CL2¢Lze’L2“’, with Cp,
=(-A,B;/AL)"?. (iii) The MVS of Eq. (18) has the coef-
ficients

S ApALBr —2A Ap 1B\
L= = —Ap AL +4AT L ’

CL=i

2

12

( AL AL B —-2AL AL 1 B ) (19
—AL AL +AAT

The free energy of the GVS is

B

Loi=1,2, (20)

FL_=—27TA2_ N
i L[AL;

and that of the MVS,

Fp o =2m———————5—(=A; A, B —A7 A, B}
Ly.L, ALIAL2_4Ai1,L2( LALPL = ALALDPL,

+4AL1AL2AL1,LZBLIBL2)' (21)

We obtain two conditions for the stability of the GVS. For
instance, for CL1=O and CLZ;E 0, one obtains

_ALZ > 0,

For CL1 #0 and CL2=O, the first condition is L; >0, and the
second one is obtained from the above one through the in-

terchange L« L,. There are three conditions that must be
fulfilled to render the MVS stable, namely,

ALIALZBLI - ZALZALI’LZBLZ > 0,
ALZALZBLI - ZALZALIVLZBZQ > 0,

A, 1~ AL AL > 0. (23)
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FIG. 2. The largest vorticity that can nucleate in the circular
cone.

III. GIANT VORTEX STATES

In this section, we numerically solve Eq. (7) under the
appropriate boundary condition of Eq. (4), applied to the
external surfaces of the cone. In Fig. 2, we describe the ob-
tained maximum vorticity in two different ways in terms of
the cone parameters. The maximum vorticity corresponds to
the GVS with the highest angular momentum quantum num-

ber L able to render a negative eigenvalue for L. Figure 2(a)
shows the height versus apex angle diagram with the maxi-
mum vorticity, limited to the 0.16—6¢ and to the 1°-60°
ranges, respectively. The maximum vorticity is also given in
Fig. 2(b) as height versus radius, this last ranging from 0.1¢
to 6. From these maximum vorticity plots, we learn that
keeping the circular basis (r) fixed and increasing the height
(zp) do not change significantly the maximum vorticity as
much as it does by increasing the circular basis (r) under
fixed height (z;). In this last case, a substantial increase of
the maximum vorticity is possible. Notice that for the chosen
ranges of Fig. 2, the cones with zp<1.5¢ or #<12° or r
= 1.7£ cannot sustain a vortex state.

Next we show the eigenvalue versus magnetic field and
the free energy versus magnetic field diagrams, some
Cooper-pair density, and phase distributions of the following
cones:

(i) 2.5-30 (z9=2.5¢, 0=30°, r=1.44¢),

(ii) 2.5-45 (zp=2.5¢, 6=45°, r=2.5¢),

(iii) 4.0-45 (zp=4.0¢, 6=45°, r=4¢),

(iv) 2.5-60 (z9=2.5¢, 0=60°, r=4.33¢).

According to Fig. 3, the maximum vorticity for these
cones is the following: L=0 for 2.5-30, L=2 for 2.5-45, L
=6 for 4.0-45, and L=7 for 2.5-60, respectively.

Figures 3(e)-3(h), obtained from Eq. (17), show that for a
certain H there may exist more than one stable GVS. The
lowest one in free energy is the ground state, and the other
ones are metastable states. The dotted horizontal line is a
guide for the eye to indicate the normal state. Increasing H
causes the ground state to transit to a higher vorticity, L
— L+1. We observe that the crossing points, defined by the
intersection between L and L+1 curves, shift toward lower
magnetic fields as the cone sustains higher vorticities. Also,
notice that the maximum field able to destroy the supercon-
ducting state rapidly shifts toward H ., as the maximum cone
vorticity increases. These results are similar to those found in
Ref. 13 for mesoscopic superconducting spheres. Next we
investigate the Cooper-pair density of the different GVS, ob-
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FIG. 3. (Color online) Eigenvalue and free energy vs applied
magnetic field plots for different circular cones. The insets are en-
largements of some of the curves in a limited H region.

tained from Eq. (15): |W(p, ¢,2)|?==A(B./A) ¢ (p,z)%.
Figure 4 shows a contour plot of the GVS Cooper-pair

density for the 2.5-45 cone in the cross section p-z plane for

some selected vorticities and applied magnetic field values.

25
2
1.5

Z/¢

n
N L=1 L=1
H=0.3Hc2 H=1.2Hc2
00 051 15 2 0 051 15 2 0 05 1 15 2 25
plE plE p/E

FIG. 4. (Color online) The Cooper-pair density in the cross sec-
tion p-z plane for the 2.5-45 cone. Selected L and H values are
shown here. Blue to red means density range from minimum to
maximum.
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FIG. 5. The vorticity of the ground state vs the applied magnetic
field for two selected cones.

For this cone, although there are three possible vorticities
available, the ground state is always the zero vortex state
(L=0) for any H, according to Fig. 3(f). The density for this
small cone is dominated by surface superconductivity that
controls the state within the depth of £ from the surface (see
Ref. 31). In Figs. 4(a)-4(c), |¥|* is found to be maximum at
the tip because of the enhanced surface superconductivity in
small regions (see, e.g., Ref. 31 for the two-dimensional
case). Increasing the cone size rapidly increases the number
of different ground states, as shown in Fig. 5 for the 4.0-45
and 2.5-60 cones.

Figure 6 displays the GVS Cooper-pair density at the p-z
cross section for the 4.0-45 cone, for selected L and H val-
ues. According to Fig. 5, the densities of Figs. 6(a), 6(e), and
6(i) correspond to ground states.

From Fig. 6, we can draw some general conclusions about
the GVS in the cone. The zero vortex (L=0) state reaches
maximum (red) density around the symmetry axis near the
apex. There the cone reaches dimensions comparable to &
and surface effects dominate the physics. The growth of the

L=2
H=0.6Hc2 H=1H¢2
2 3 0 1 2 3 0 1 2 3 4
p/E p/E p/E

L=2 L=2

H=0.1Hc2

i

FIG. 6. (Color online) The Cooper-pair density is shown in the
p-z cross section of the cone 4.0-45 for the following magnetic
fields and vorticities: H/H,,=0.1,0.6,1.0; [(a)—(c)] L=0, [(d)—(f)]
L=1, and [(g)-(i)] L=2. Blue to red means density range from
minimum to maximum.
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FIG. 7. (Color online) The Cooper-pair density of giant vortex
states (a) L=1 and (b) L=2 at the z=4¢ plane for the circular cone
4.0-45. According to Fig. 5, the profiles of curves H/H.,
=0.6,0.7,0.8 in (a), and of curves H/H.=0.9,1.0 in (b), are
ground state densities.

minimum (blue) density at the edge of the circular basis for
fixed L and increasing H in Fig. 6 suggests that vortex en-
trance will take place there [(z,p)~ (z¢,z0 tan(6))]. For in-
stance, this suggests that states represented by Figs. 6(b) and
6(c) cannot be the ground state. Indeed, for L=1, a vortex
takes over the center of the cone, and consequently, the den-
sity reaches a minimum there. Again the depletion of the
density near the edge of the circular basis is seen in Fig. 6(f),
and taken again as indicative that this state is not fit to be a
ground state. For L=2, the ground state corresponds to Fig.
6(i). This state also presents a small depletion near the edge
of the circular basis, interpreted here as a signal of a weaker
stability and, consequently, of an approaching matching field
that will eventually give rise to a higher angular momentum
state.

To get further insight into the GVS Cooper-pair density,
we plot it versus r along the circular basis (z=z,) for several
H values in Fig. 7. The density profiles are shown for the
L=1 and L=2 states of the 4.0-45 cone, and resemble similar
results previously obtained for the thin disk (see Fig. 2 of
Ref. 6).

(c)

A
D’

=
4

FIG. 8. (Color online) The Cooper-pair density and the phase of
order parameter in two cross section planes, z=z, and z=z/2, are
shown for the 4.0-45 core at the applied magnetic field H=1.2H ,
with vorticity L=2. Blue to red means density range from minimum
to maximum for all plots; however, with different meanings. Blue to
red for (a) and (b) means maximum to minimum density, whereas
for (c) and (d), it indicates 0—27 range.
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FIG. 9. (Color online) The free energy of the 2.5-45 cone as a
function of the applied magnetic field. These L giant vortex curves
are those of Fig. 3(f), but subjected to distinct stability conditions.

The phase of the order parameter is an important tool to
determine the vorticity because it is equal to L X ¢ at any
(p, ¢,z) point inside the cone.>* Thus a GVS with vorticity L
is identified by the presence of L consecutive red to blue
hues. Figure 8 provides an example as it shows the density
and the phase at two cross section planes of the 4.0-45 cone,
taken at the circular basis and at the middle (L=2 and H
=1.2H,) of the cone.

An important remark concerns the two ways to treat the
GVS, either as a one- or a two-component order parameter,
provided that in the last approach one of the components is
taken equal to zero. Obviously, they lead to the same order
parameter and free energy. However, their stability condition
is distinct. Within the single component description, it suf-
fices that the eigenvalue is negative to guarantee the stability,
whereas for the two-component wave function, there is an
extra condition given in Eq. (22). For this reason, we display
the free energy of the GVS for the 2.5-45 cone in Fig. 9,
which has already been plotted in Fig. 3(f). The largest vor-
ticity curve (L=2), already presented in Fig. 3(f), has totally
disappeared here and the L=1 curve is substantially reduced
in comparison to Fig. 3(f). The zero vortex regime (L=0) is
the same for both plots.

IV. MULTIPLE VORTEX STATES

Here, we study the two-component order parameter of Eq.
(18), which is able to describe both GVS and MVS. The
two-component approximation is good in case there are vor-
tices in the center and at most in one shell around this center,
an approximation suitable for small mesoscopic supercon-
ductors. We use the notation (L;,L,) to indicate the MVS
whose order parameter is formed by ¢;, and ¢ , and L for
the giant vortex state with vorticity L.

The stability of GVS and MVS states is based on Eqgs.
(22) and (23), respectively. For the 4.0-45 cone, the follow-
ing states are stable according to these conditions: L, L
=0-6 (GVS); (0,L), L=2-6 (MVS); (1,L), L=4-6 (MVS);
and (2,L), L=6 (MVS). Figure 10 shows the free energy of
several states of the 4.0-45 cone, as a function of H. Figure
10(b) shows a zoom of the high H region. Notice that the
GVS lines superposed by MVS lines are not visible. The
GVS curves are solid lines, whereas the MVS curves are
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FIG. 10. (Color online) The free energy of the 4.0-45 cone as a
function of the applied magnetic field, and (b) is a zoom of the high
field region of (a). Solid curves are GVS and the others are different
MVSs. (c) is the vorticity of the ground state as a function of the
applied magnetic field.

represented either by a dashed or a dotted line. The horizon-
tal dotted line is a guide for the eye for the F=0 line. The
MVS with vorticity L=4 has the following free energy or-
dering: the (0,4) state is lower than the (1,4) state in their
common magnetic field region, and the (1,4) state is lower
than the (2,4) state in their common magnetic field region.
Similarly, for the MVS with vorticity L=5, we observe that
the (0,5) state is lower than the (1,5) state, which in turn is
lower than the (2,5) state. Curiously, we do not find any
intersect (matching fields) between MVS with the same vor-
ticity, and intersects are found only between curves with dif-
ferent vorticities. In Fig. 10(c), we show the vorticity of the
ground state for this 4.0-45 cone as a function of H, and find
that the vorticity of the ground state goes from 0 to 5 for
increasing field. The ground state is mixed by the giant vor-
tex states (L=0-5) and the MVS (0,L), where L=2-5.
There are no GVS (L=6) and other MVS existing in the
ground state. Notice that near the superconducting/normal
boundary, we have a MVS, while in a superconducting disk,
this is usually a giant vortex state.
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FIG. 11. (Color online) The free energy of the 2.5-60 cone as a
function of the applied magnetic field, (b) is a zoom of the high
field region of (a), and (c) is the vorticity of the ground state as a
function of the applied magnetic field.

Next we repeat the same kind of analysis for the 2.5-60
cone. Figure 11 shows the free energy as a function of H,
where Fig. 11(b) is a zoom of the high H region. The regions
of the GVS curves that overlap with the MVS curves are not
visible in this figure. The curves are represented in the fol-
lowing way: L GVS by solid curves, the (1,L) states by
dashed curves with a star mark, and the (2,L) states by
dashed curves with a plus mark. We find the following states
to be stable: GVS with L=0-7; MVS (0,L), L=2-7; (1,L),
L=4-7; and (2,L), L=6—7. Now, we focus on some MVSs
which share the same L vorticity. The states (0,6), (1,6), and
(2,6) have vorticity 6, and within their common magnetic
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field region, the (0,6) state is the lowest in free energy, while
the (2,6) is the highest. Figure 11(b) shows that the states
(0,6) and (1,6) have the same free energy at H/H.,=1.01,
which is also the case for the states (1,6) and (2,6) at
H/H,=1.13. The (0,L) state has lower energy than the
(1,L) state in their common magnetic field region for L=4,
5, and 7. There is no common field region for states (1,7) and
(2,7). Figure 11(c) shows that the ground state vorticity for
the 2.5-60 cone runs from 0 to 6 as a function of increasing
H. The ground state is mixed by the GVS (L=0-6) and the
MVS (0,L), where L=2-5. There are no GVS (L=7) and
other MVS nucleating as ground state. Comparison between
Figs. 11(c) and 10(c) show interesting differences between
these two cones. For instance, the field region for the stabil-
ity of the (0,2) ground state is much smaller in the former
case than in the latter.

Next we study the Cooper-pair density and the phase of
the order parameter in several situations. Figures 12 and 13
show several plots for the 4.0-45 cone, and their main differ-
ence is that Fig. 13 contains a vortex in the center, whereas
Fig. 12 does not. By increasing the field, the following fea-
tures are observed, where L is the total vorticity. For the
(0,L) (L=2-6) states, there are L single vortices. They are
arranged on a shell with no vortex in the center. The Cooper-
pair density is maximum at the apex. For the (1,L) (L
=4-6) states, there are L vortices with (L—1) forming a shell
and a vortex in the center. For the (2,6) state, the number of
vortices is 5, while the vorticity is 6. Four of them are lo-
cated on a shell with a giant vortex in the center with vortic-
ity 2.

The cone displays the interesting feature that the vortex
density is height dependent. The apex is the region of low
vorticity that coexists with the circular basis, the region with
high vorticity. Figure 12 contains 25 figures, arranged in five
columns and five rows, associated with the (0,L) state. The
left (magenta) column displays three-dimensional surface
plots, which are isodensity plots (i.e., |/*> constant). In fact,
each plot is made of two kinds of surfaces, namely, the inner
ones which describe the vortices inside the cone and an outer
one very near the surface of the cone. The following two
columns of Fig. 12 are contour plots of the density and
phase, respectively, taken at the circular basis (z=zy=4&).
The two last columns of Fig. 12, following the left to the
right direction, are also contour plots of the density and
phase, taken at two other cross section planes, namely, z
=2¢ and z=¢, respectively. Figure 13 is associated with the
(1,L) state and is arranged in a similar fashion, but has just
four columns and four rows. Top to bottom rows of Figs. 12
and 13 are in ascending magnetic field order, with the former
and latter describing low and high fields, respectively. Figure
13 does not show the cross section plane z=¢ plots because
the superconducting state is nearly destroyed there by the
presence of the central vortex, as seen in the three-
dimensional surface plots of its left column.

Although the same color scheme blue to red is used for all
two-dimensional plots, its meaning is not the same for all of
them, as it corresponds to different scales. For all the phase
plots, the blue to red hue corresponds to the same scale of
0-27r. In the Cooper-pair density plots, the blue to red hue
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(0.2) H=0.6H,,

(0,6) H=1.2H_,

stands for minimum to maximum density, but the scale de-
pends on the magnetic field value. For instance, above H,.,,
the order parameter starts to vanish, which means that the
maximum density becomes very low although it is still being
represented by the red color like it is for low fields. This is
also true for the three-dimensional isodensity plots whose
surface is drawn at some fraction of the maximum density.
The white spots in two-dimensional isodensity plots stand
for the region where the Cooper-pair density is lower than
1073, except that in Fig. 13(d) which is lower than 107
Notice that both phase and density plots show very clearly
the location of a vortex, by a border line between blue and
red colors and by the white spots, respectively. To help the
understanding, we provide in Table I the four different values
of the density |¢4> considered in Figs. 12-16.

To investigate the effects of the magnetic field into a
(0,L) vortex arrangement, the MVS (0,3) is considered at
different fields H/H.,=0.6, 0.9, and 1.2. Figure 14 displays
the corresponding plots at these fields and shows that for
increasing H, the vortices of the MVS (0,3) shift toward the
center. There is no vortex in the circular cone of Fig. 14(a)
because the applied magnetic field is not sufficiently large
for this. Notice that the three-dimensional isodensity plots of
Fig. 14 are taken at different values, according to Table I.
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)
W

FIG. 12. (Color online) Plots of the vortex
configuration, Cooper-pair density, and order pa-
rameter phase for the (meta-) stable MVS (0,L)
L=2-6atH/H=0.6,0.9, and 1.2 for the 4.0-45
cone. The Cooper-pair density and the order pa-
rameter phase are shown for selected planes: z
=4¢, 2¢, and £ (left to right). All these states are
stable. (a) and (c) are the ground states, while the
others are not.

Figure 15 shows the (1,5) MVS at different fields,
H/H.,=1.06, 1.13, and 1.21, respectively. It helps to under-
stand the effects of the magnetic field on the (1,L) kind of
state. Again the three-dimensional isodensity plots of Fig. 15
are taken at different values according to Table I. The small
white holes in the plots of Cooper-pair density in Fig. 15
mean that the Cooper-pair density there is smaller than
0.001, but still different from zero. Here, we find that (i)
when the applied magnetic field is not sufficiently large,
there are no vortices away from the center and one vortex in
the center with very small radius; (ii) with increasing mag-
netic field, vortices around the center appear; they will move
toward the center and become bigger.

To complete our Cooper-pair and phase studies, we con-
sider the 2.5-60 cone. Figure 16 shows the following MVS
states: (0,7) H/H,=12, (1,77 H/H,=1.19, and (2,7)
H/H.=121. Figure 16 shows the (0,7) MVS at H/H,,
=1.2. Seven vortices are arranged on a shell around the cen-
ter; the (1,7) MVS at H/H_.,=1.19 has a shell with six vor-
tices and a vortex in the center; the (2,7) MVS at H/H,,
=1.21 has vorticity 7 with five vortices on a shell and one
GVS with vorticity 2 in the center.

Similar to the thin disk, the circular cone with size com-
parable to & only supports GVS. Increasing its size allows for
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(1,4) H=1.05H ,

FIG. 13. (Color online) Plots of the vortex configuration,
Cooper-pair density, and order parameter phase for the (meta-)
stable MVS (1,L) L=4-6 and (2,6) at H/H.,=1.05, 1.15, 1.25, and
1.27 for the 4.0-45 cone. The Cooper-pair density and the order
parameter phase are shown for selected planes: z=4¢ and 2£ (left to
right).

the onset of MVS described through Eq. (7), with coeffi-
cients given by Eq. (19). However, for the cone, the GVS
always occupies its major axis and does not break into a

MVS, as it does for the narrow constriction problem of
Ref. 23.

(0,3) H=0.6H_,
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TABLE 1. Density values (arbitrary units) are shown for some
figures: the three-dimensional isosurface density (| ¢|§D), the density
at the two-dimensional white holes (|¢{%,), and the maximum den-

. — 2 — 2
sity at the planes 2y =4£[|yf2,,(cs)] and 2= 2{|y/2,,(z)].

Figure lt3p ul2, ez [hn(z2)
12(a) 0.001 0.001 0.76 0.888
12(b) 0.005 0.001 0.59 0.486
12(c) 0.002 0.001 0.257 0.199
12(d) 0.002 0.001 0.227 0.215
12(e) 0.001 0.001 0.0925 0.224
13(a) 0.005 0.001 0.422 0.279
13(b) 0.002 0.001 0.269 0.1505
13(c) 0.001 0.001 0.0766 0.0258
13(d) 0.005 0.001 0.0728 0.0264
14(a) 0.05 0.05 0.744 1.048
14(b) 0.005 0.001 0.59 0.486
14(c) 0.005 0.001 0.364 0.288
15(a) 0.005 0.001 0.264 0.306
15(b) 0.002 0.001 0.256 0.186
15(c) 0.001 0.001 0.23 0.036
16(a) 0.0005 0.0005 0.097

16(b) 0.0005 0.0005 0.0195

16(c) 0.0005 0.0005 0.0223

V. PHASE DIAGRAMS

In this section, we obtain phase diagrams for the cone that
well summarize the most important results. Figure 17 shows
the apex angle versus the applied magnetic field for a few
fixed heights, namely, zo/£=2.0, 3.0, and 4.0, respectively.
According to Figs. 17(a), 17(c), and 17(e), the frontier be-
tween the normal region and the superconducting one is

FIG. 14. (Color online) Plots of the vortex
configuration, Cooper-pair density, and order pa-
rameter phase for the (meta-) stable MVS (0,3) at
H/H.,=0.6, 0.9, and 1.1 for the 4.0-45 cone. The
Cooper-pair density and the order parameter
phase are shown for the z=4¢ and z=2¢ planes.
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(1,5) H=1.06H_,

mostly covered by a state with no vortices (L=0). An arrow
points to the small region of this diagram that contains vor-
tices (L # 0). Extremely large fields can be reached in case of
a very small apex angle in comparison to H,. This supports
the experimental observation that superconducting tips used
in scanning tunneling spectroscopy can reach fields much
higher than that of the bulk.'®?! For angles approximately
above 55°, 43°, and 32°, vortices can be present for the
7o/ €=2.0, 3.0, and 4.0 cones, respectively. Figures 17(b),
17(d), and 17(f) give a zoom of the areas containing vortices.
An integer number gives the maximum vorticity that can fit
into each region. The (green) shading contains MVS,

PHYSICAL REVIEW B 77, 054511 (2008)

FIG. 15. (Color online) The plots of the vor-
tex configuration, Cooper-pair density, and the
phase of the order parameter of the MVS (1,5) at
the applied magnetic fields H/H.,=1.06, 1.13,
and 1.21 for the 4.0-45 cone. The Cooper-pair
density and the order parameter phase are shown
for the z=4¢ and z=2¢ planes.

whereas the remaining (yellow) light region has GVS. A re-
entrant behavior is found for the two largest cones: zo/&
=3.0 and 4.0. For an apex angle, approximately smaller than
47° and 43° in these two cases, respectively, it is possible by
increasing the field to start and end without a vortex (L=0)
while in the superconducting state and still go through an
intermediate MVS configuration.

Figure 18 shows the applied magnetic field versus tem-
perature phase diagram, which contains the border line sepa-
rating the superconducting to the normal state, for some se-
lected cones. This figure also displays the stability lines for
the GVS with vorticity L. Notice that, according to Fig. 17,

(0,7) HH_,=1.2

FIG. 16. (Color online) The plots of the vor-
tex configuration, Cooper-pair density, and the
phase of the order parameter of the MVS (0,7),
(1,7), and (2,7) at H/H,,=1.2, 1.19, and 1.21 for
the 2.5-60 cone. The Cooper-pair density and the
order parameter phase are shown for the z=4¢
plane. The white hole stands for very low

Cooper-pair density.
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FIG. 17. (Color online) Apex angle versus applied field for the
70/ =2 cone. According to (a), most of this phase diagram is a no
vortex (L=0) region. (b) is a zoom over the region that contains
vortices (L#0). The (green) shaded region represents the MVS
region, whereas the (yellow) light region has GVS. (c) and (d) are
for the cone with zy/&=3, while (e) and (f) are for the cone with
70/ £=4.
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near the border line where the superconducting state ceases
to exist, there are basically just GVS.

Figure 17 helps to understand many properties of the
cone. For instance, the z,/ é=4 with apex angle 6=38° goes
through two L=1 states by increasing the field. Consider the
two possible magnetic field values, H/H,,=1 and H/H,,
=1.15. They fall, respectively, in the (green) shaded and in
the (yellow) light regions, and, therefore, must correspond to
a (0,1) MVS and a L=1 GVS, respectively. Notice that we
have not discussed the MVS (0,1) so far because it is not
stable for the studied circular cones (2.5-45, 4.0-45, and 2.5-
60). However, for the 4.0-38 cone, the L=1 GVS and the
(0,1) MVS are the ground state at H/H.,=1 and H/H,,
=1.15, respectively. According to Fig. 17(e), the (0,1) MVS
corresponds to a single bent vortex, while the L=1 GVS
takes the cone major axis, as seen in Fig. 19(b).

VI. CONCLUSION

The vortex state of a mesoscopic superconducting circular
cone was obtained using the Ginzburg-Landau theory. The
applied magnetic field is perpendicular to the circular basis.
The vortex density depends on the cone height because vor-
tices emerge perpendicularly to the surface. Thus, the only
vortex able to reach the cone apex is the one occupying the
central axis. We solved the linear Ginzburg-Landau equation
and expressed the order parameter in terms of its eigenfunc-
tions with negative eigenvalues, the only ones useful to con-
struct a solution of the nonlinear Ginzburg-Landau equation.
Only two components are taken in this expansion and found
to give an accurate description of giant and multivortex
states. The two components are labeled by the azimuthal
angular momentum pair (L;,L,), where L,>L,. In the low
field range, L, vortices form a shell around the center with no
vortex in the center (L;=0). With increasing field, vortices
move toward the center and, for sufficiently large field, L,
—L; vortices can form a shell, while there is one giant vortex
with vorticity equal to L, at the center. The present results

3.0 — : : 18 :
2.5} @ | 15t (b)
_ 20} (2.5¢,30°) 1.2} (2.5¢,45°%) |

(0)

S

= 15¢ £ 0.9
T 90l T o6t 1
0.5} 0.3r

0 0 02 04 06 08 1.0 00 02 04 06 08 10 FIG. 18. (Color online) The phase diagram of
TIT, Ty applied field versus temperature is shown here for
1.5 T ' selected cones. GVSs with vorticity L are shown
1_2; (c) (d) 7 near the superconducting-normal boundary.
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L=1
H/Hc2=1

FIG. 19. (Color online) The 4.0-38 cone has two possible single
vortex states, namely, (a) the (0,1) MVS at H/H.,=1.15 and (b) the
L=1 GVS at H/H=1. The isosurfaces are drawn at densities (a)
0.005 and (b) 0.02, as discussed in Table I.

contribute to the understanding of the superconducting prop-
erties of tips in the presence of an external magnetic field,
which are currently used in scanning tunneling spectroscopy
measurements.
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APPENDIX

In the main text, we limited ourselves to eigenvalues of
the linear problem, defined by Eq. (7), that have zero radial
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FIG. 20. (Color online) Eigenvalue A, as a function of H/H,,
are shown in (a) and (b) for the 4.0-45 and the 2.5-60 cones, re-
spectively. States are represented in the following way: L=0 (solid
curves), L=1 (dotted dashed curves), and L=2 (dotted curves); n
=0 (black curves), n=1 (red curves), and n=2 (blue curves). The
dashed horizontal lines are just a guide for the eye (A=0 level).
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FIG. 21. (Color online) The radial dependence of the Cooper-
pair density for the (L=0,n=0) and (L=0,n=1) states are shown in
the circular basis (z=z) [(a)-(c)] for the 2.5-60 and [(d)—(f)] for the
4.0-45 cones at selected applied magnetic fields, chosen in the re-
gion that the (L=0,n=1) state has a negative eigenvalue.

quantum number, i.e., n=0. Here, we investigate those states
with n#0 and refer to them as high-n states. The corre-
sponding eigenvalues A; . increase with n for fixed L. A
positive eigenvalue A, is not useful for the present pur-
poses because only negative eigenvalue states can be a solu-
tion of the nonlinear GL theory. Most important, we find,
beyond the present two-component framework, that the high-
n states are unstable, although still falling in the negative
eigenvalue regime.

Figures 20(a) and 20(b) show the first nine eigenvalue
curves versus the applied magnetic field (A ,, L=0,1,2 and
n=0,1,2) for the 4.0-45, and 2.5-60 cones, respectively. Ac-
cording to them, there is only one high-n state with a nega-
tive eigenvalue regime, namely, the (L=0,n=1) state. This
happens within a limited window of low applied magnetic
field.

Next, we plot the profiles of the Cooper-pair density for
the (L=0,n=0), (L=0,n=1) states along the radial direction
of the circular plane basis (plane z=z;). The two circular

FIG. 22. (Color online) The Cooper-pair density of the first
high-n state, (L=0,n=1), at H/H.,=0.05 for the 4.0-45 cone is
shown for two cross section planes, namely, in the p-z and z=z,
planes. This last one is just a two-dimensional view of Fig. 21(f).
Both plots have high Cooper-pair density in red, and low in blue,
though they are at different scales.
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cones of Figs. 21(a) and 21(b) are considered at some se-
lected H values within the regime that the state (L=0,n
=1) has a negative eigenvalue, and therefore, interesting to
construct the vortex state. From these figures, we find that
the Cooper-pair density of the (L=0,n=1) state vanishes
within a ring at this surface, a feature already found in the

PHYSICAL REVIEW B 77, 054511 (2008)

thin disk problem (see Ref. 1), where one finds that it is not
suppressed by increasing H within the negative eigenvalue
regime. Finally, we show in Fig. 22 the Cooper-pair density
of state (L=0,n=1) at H/H,,=0.05 for the 4.0-45 cone in
two cross section cuts, namely, along the p-z and the z=z,
planes.
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